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In October 2001, the field of ultracold-atom physics was honored with the
Nobel Prize in physics. It was awarded to Carl Wieman, Eric Cornell, and
Wolfgang Ketterle for the creation and study of dilute-gas Bose-Einstein

condensates (BECs). Never before had the BEC phase transition, predicted by
Einstein more than 70 years earlier, been observed in such a clear and unam-
biguous realization. By confining neutral atoms in a tiny magnetic trap and
cooling them to temperatures only nanokelvins above absolute zero, the Nobel
laureates and their colleagues had slowed the atoms down to the point at which
the individual wave functions begin to overlap and many thousands of atoms
suddenly occupy exactly the same single-particle quantum state. Coaxing boson-
ic atoms (atoms with integer spin) to condense into this coherent quantum state
had been the “holy grail” of the cold-atom physics community for almost two
decades. The quest had led to the development of extraordinarily clever trapping
and cooling techniques, including Zeeman slowing, magneto-optical trapping,
evaporative cooling, and time-orbital potential trapping. The achievement of the
first atomic BECs in the summer of 1995 has led to a remarkable sequence of
advances that continues unabated. 

At first, this article first provides a historical perspective on atom-trap BECs
and then focuses on the exciting experiments that are driving the field of 
cold-atom physics. Our historical overview stresses the long-range coherent
properties of BECs and the role BEC physics has played in the explication of
superfluidity in liquid helium. In discussing current work, we have selected a
line of research and a series of experiments that illustrate the enormous flexibili-
ty of the new atom-trap BEC technologies. These experiments were carried out
at the Massachusetts Institute of Technology (MIT), Yale University, and Max
Planck Institute of Physics in Munich, Germany. Their achievements suggest
intriguing prospects for future work in ultracold atomic physics in general and
at Los Alamos in particular. In fact, several Los Alamos scientists have already
contributed to the development of this field on an individual basis, and we
briefly mention those in the concluding section.

The opening figure, produced by Ketterle’s group at MIT, is taken from the
paper (Andrews et al. 1997) that provides the starting point for our discussion 
of the new avenues introduced by these advances. The figure is a direct optical
image of two ballistically expanding BECs showing a spatial interference 
pattern on a macroscopic scale. This pattern is a stunning confirmation that 
the phase coherence in atom-trap BECs is as complete as in optical lasers,
and therefore these condensates can be manipulated and used as atomic lasers,
that is, as coherent sources of atomic-matter waves. This is a unique prospect
for phase-coherent matter. 
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After we introduce and resolve an intriguing puzzle regarding the origin of the interfer-
ence pattern, we turn to a BEC experiment by the group of Mark Kasevich at Yale. This
experiment is interesting from a theoretical point of view because the BECs display both
laserlike and superfluid aspects of long-range phase coherence. The former is usually
reserved for a nonequilibrium system of noninteracting photons, whereas the latter is usu-
ally reserved for an equilibrium or near-equilibrium fluid of strongly interacting helium
atoms. Specifically, adjacent weakly linked BECs display laserlike spatial interference in
a manner that implies Josephson-junction-like phase dynamics between the BECs (Orzel
et al. 2001).

The purpose of the Yale experiment was not to probe coherent behavior but to induce
and observe quantum fluctuations in the conjugate variables of long-range phase versus
localized atom number. The group loaded the BECs into an optical lattice in which the
potential barriers separating the lattice wells serve as junctions. By gradually freezing
out the motion of the bosons through the junctions and observing the subsequent loss of
phase coherence, the scientists were able to infer an increased certainty in the number 
of atoms in each well, that is, the formation of number-squeezed states. A few months
later, the group of Theodore Hänsch in Munich, Germany (Greiner et al. 2002),
conducted a beautiful experiment that took this process to its limit. They observed 
the sudden disappearance of all phase coherence in a BEC trapped in an optical-lattice
potential, a direct demonstration of the Mott-insulator phase transition in which a 
partly coherent state becomes an all-localized state and the tunneling between wells
completely stops. This transition is somewhat analogous to the well-known Mott 
transition from a conducting phase to an insulating phase of electrons in a crystal lattice.

The success of these experiments is due in part to the fact that dilute-gas BECs, with
their long coherence lengths and slow evolution times, are readily manipulated and
observed with high-precision atomic and optical technologies. Atom-trap BECs have
become a remarkably flexible and transparent system for exploring complex many-body
phenomena. 

In introducing a theoretical view of these developments, we use a “pedestrian”
approach to the condensate description, drawing the comparison to single-particle quan-
tum mechanics wherever possible. This approach will make some of the more subtle
points of many-body condensate physics accessible to the nonspecialist. We end with an
assessment of the atom-trap BEC system for investigating fundamental issues in many-
body physics. 

Atom-Trap BECs—A Realization of Einstein’s Condensate

Einstein was the first to understand the quantum concept of particle indistinguishabil-
ity and to realize some of its far-reaching implications. He made the following predic-
tion: When a gas of noninteracting bosons, or particles with integer spin, is cooled
below a critical temperature, a significant fraction of the particles will suddenly find
themselves in the same lowest-energy single-particle state. (This is an example of a
many-body system that is “quantum degenerate,” a term signifying that the system’s
behavior is dominated by quantum statistics—that is, the statistics of indistinguishable
particles, either Bose statistics for particles with integer spin or Fermi statistics for parti-
cles with half-integer spin—as opposed to the Boltzmann statistics of classical systems.)
In the limit of zero temperature, all the noninteracting bosons would occupy exactly that
same ground state yielding a many-body state that we now call a BEC. 

Similarly, in the ground state of a dilute gas of bosons, almost all particles find them-
selves in the same single-particle quantum state. Much attention has been devoted over
the years to the study of such dilute-gas BECs because they are believed to provide a
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model for studying superfluidity in a more direct way. The term “superfluidity” denotes
a host of low-temperature fluid phenomena such as inviscid, or dissipationless, flow and
quantized vortices, all of which contradict our intuition for classical fluid behavior.
Interestingly, all condensed-matter superfluids such as helium-4, its fermion cousin 
helium-3, and the superconductors consist of strongly interacting particles and do not
resemble dilute-gas BECs in most of their particulars. However, we believe that their
superfluid nature arises from the property of long-range phase coherence, which they
share with the dilute-gas BECs. The concept of long-range phase coherence will be 
discussed later. For now, simply stated, it implies the existence of a complex-valued,
single-particle-like wave that characterizes the entire many-body system. 

In the case of a dilute BEC, the single-particle-like quantum wave (a wave function
that depends on the position of a single particle) can be identified with the wave func-
tion of the single-particle state that is occupied, on average, by more than one boson and
is also known as the multiply occupied single-particle state.1 Because almost all parti-
cles occupy that single-particle state at zero temperature, the dilute BEC exhibits almost
complete coherence. The dilute BEC is then the simplest superfluid system. In contrast,
the precise description of the quantum wave coherence of a strongly interacting 
superfluid is not straightforward. Although it is tempting, for instance, to associate 
the fraction of the fluid that is superfluid (and can flow without dissipation) with the
fraction of the atoms that occupy the lowest-energy single-particle state, that assumption
turns out to be wrong. At zero temperature, the helium-3 fluid is all superfluid, whereas
only 10 percent of the atoms occupy the zero-momentum state. 

Questions regarding the strong interaction effects and the role of quantum fluctua-
tions in reducing the phase coherence and superfluid fraction remain of interest. Against
this backdrop, it may be worth noting that the optical-lattice BEC experiments described
below give unprecedented control of such quantum fluctuations. 

The current atom-trap BECs are dilute in a sense that we will specify shortly. Their
experimental achievement represented the first unambiguous realization of dilute BECs.
They are made from neutral alkali atoms (sodium, rubidium, lithium, and more recently,
hydrogen) that are trapped and cooled with a combination of optical and magnetic fields.
(See “Experiments on Cold Trapped Atoms” on page 168 for a description of trapping
and cooling processes.) The alkali atoms chosen consist of an even number of fermions
(protons, neutrons, and electrons) giving a total spin that has an integer value. These
“composite” bosons exhibit the same type of “gregarious” behavior that Einstein predict-
ed for noncomposite bosons. Indeed, the experimenters knew that a BEC had formed
when they saw evidence for a sudden increase in the number of atoms occupying the
same single-particle ground state at the center of the trap (see Figure 1). This “condensa-
tion” is quite different from the familiar liquid-vapor phase transition seen in water, for
example. The particle wave functions overlap perfectly, and the behavior of this degener-
ate Bose-Einstein gas, or condensate, becomes exquisitely sensitive to the interparticle
interactions even if the system is dilute. The spatial extent of the multiply occupied 
single-particle wave function is determined by the competition of the effective interparticle
repulsion and the trapping potential that confines the atoms. In present-day experiments,
the size of the BEC can be as large as one-tenth of a millimeter. In other words, the 
multiply occupied single-atom wave function describing the BEC is macroscopic.

Although Bose-Einstein condensation had never been directly observed before 1995,
this phase transition served as a textbook example in statistical mechanics (Huang 1987)
because it is one of the few phase transitions that can be described analytically. 
As Einstein himself stressed (Pais 1979), this remarkable transition follows solely from
the quantum-mechanical concept of particle indistinguishability, unlike the usual phase
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transitions, which result from a competition between interactions and entropy (disorder). 
The neutral atom-trap systems are extremely dilute. Like billiard balls, they feel 

each other’s presence only when they are separated by a distance equal to or less than 
a particular length. This length, known as the scattering length a, takes on different 
values for different atomic species—or even for the same species in different atomic
states—but for most of the trapped neutral alkali atoms, its value is positive (reflecting
an effectively repulsive force between the particles), and it tends to be about 1 nanome-
ter. We characterize the “diluteness” of the gas by visualizing the atoms as hard spheres
of radius a and computing the fraction of the total volume occupied by the spheres,
(4π/3)na3, also called the “packing fraction.” In the current atom-trap BECs, the packing
fraction ranges from one part in a million to one part in a billion. 

At that diluteness, almost all atoms are phase coherent in the zero-temperature Bose-
condensed state, somewhat in the manner that the photons produced through stimulated
emission into a single mode of an optical-laser cavity are phase coherent. That is, all
particles behave according to the same coherent wave function, and the particles can
exhibit macroscopic interference. Contrary to the optical-laser system, the BECs consist
of mutually interacting particles that are conserved (that is, the total number of atoms
remains constant) and that can relax to an equilibrium state, in which case the long-
range phase coherence gives rise to superfluid behavior. Indeed, in the last three years,
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Figure 1. The First 
Atom-Trap BECs
Some of the first signatures of
Bose-Einstein condensation
were obtained in a dilute gas of
trapped rubidium atoms in the
groups of Wieman and Cornell.
Shown in (a) are the shadow
(absorption) images of the den-
sity profile of the trapped atoms
and in (a′) the cross sections of
the local density. Both data
sequences were obtained with
varying values of the cutoff
energy used in the evaporative
cooling, the final stage in cool-
ing the trapped atoms. In evapo-
rative cooling, atoms of energy
above the cutoff, indicated in
megahertz, were removed from
the trap. As the cutoff energy
decreases, the final temperature
to which the system equilibrates
is lowered. Below a critical
value, a sharp peak appears in
the density profile, a signal that
Bose-Einstein condensation has
occurred. As the gas was con-
tained in an asymmetric (cigar-
shaped) trap, the shape
observed in (a) provides an
independent signature. The left-
most frame shows a spherically
symmetric thermal cloud; the
middle frame shows an asym-
metric density spike correspon-
ding to the condensate sur-
rounded by a thermal cloud; and
the rightmost frame shows the
final density spike in which most
of the atoms have Bose-con-
densed. (b) These shadow
images from Ketterle’s group
show a BEC in sodium. The
number of trapped atoms is
greater than that in (a) by about
a factor of 100. The density of
the condensate grows with
decreasing temperature from left
to right. (b′) These density plots
show cuts through an atomic
cloud as the condensate devel-
ops. Note that the spatial extent
of the condensate is about
0.1 mm. The size reflects the
macroscopic nature of the sys-
tem. It increases with the scat-
tering length defined in the text.
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experiments have definitively shown that the atom-trap BECs exhibit the defining behav-
ior of a superfluid such as sustained superflow (or dissipationless flow), zero resistance to
an object moving through the condensate, and quantized vortices. 

Most BEC experiments are carried out with no more than a hundred thousand to a few
million atoms. The difficulties encountered in increasing the particle number currently
limits the prospects for practical applications somewhat. On the other hand, the atom-trap
BEC technology has become fairly routine—more than 20 experimental groups have
achieved BECs by now. The extraordinary flexibilities offered by the available atomic,
molecular, and optical technologies, as well as by the imaging techniques, provide the
BECs with advantages that are unique in low-temperature physics. 

Aspects of BEC Dynamics

We will explore a bit further the two quantum concepts that are central in understand-
ing BECs and the sense in which superfluid behavior of the BECs represents the behavior
seen or inferred in liquid helium and other systems, including nuclei, subnuclear systems
produced in accelerators, and neutron stars. Those two central concepts are particle indis-
tinguishability and coherent wave behavior. 

Particle Indistinguishability. It was Einstein who realized that the statistics Bose
devised to understand the Planck spectrum of black-body radiation involved counting the
number of ways in which particles (in that case, photons) can be distributed over single-
particle states (called “subcells” in Einstein’s thermodynamic treatment). The Bose
counting presumed the particles to have a distinctly nonclassical quality. Whereas the tra-
jectories of classical particles can always be followed so that the particles can be distin-
guished from each other, Bose counting assumed particles to be fundamentally indistin-
guishable. Einstein extended the counting technique for photons, whose particle number
is not conserved, to a gas of conserved noninteracting particles, and he showed that the
indistinguishability implies a sudden increase in the number of particles occupying the
specific subcell/single-particle state of lowest energy: the BEC phase transition. 

Coherent Wave Behavior. A BEC’s coherent wave behavior follows directly from the
time evolution of the multiply occupied single-particle state. In quantum mechanics, the
one-particle system evolves according to Schrödinger’s wave equation. As a consequence,
the single-particle system can exhibit the type of interference seen in Young’s classic 
double-slit experiment, which proved that light was a wave phenomenon (see the box
“The Double-Slit Experiment”). In the quantum interpretation, light and atoms exhibit
both particle and wave behavior, and the interference results from the uncertainty in
knowing which of two possible trajectories the particle or the photon followed in reach-
ing the detector. (Put another way, the particle can simultaneously follow two different
paths to reach the screen; that is, it can exist in a superposition of probability amplitudes
A1 and A2, one for each path. The probability of finding the particle at the detector is
given by the square of the amplitude A1 + A22, which exhibits interference that is due to
the A1A2

* + A1
*A2 contribution.) Depending on the location at which the particles hit the

detector, the probability amplitudes for each path add up constructively or destructively,
respectively increasing or decreasing the probability. 

As explained in the box, the observation of an interference pattern, even with light,
can represent an experimental challenge. Many particles (or photons) must pass through
the slits for the pattern to be seen, and if the particles (photons) occupy different single-
particle states, the interference washes out, and the probability becomes a single blob
without the spatial oscillations that signal interference. In the BEC case, as in an optical-
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In 1802, Young devised and performed the double-slit
experiment, which disproved Newton’s particle theory of
light and established unequivocally that light is a wave
phenomenon. In that experiment, two holes punched in a
screen allowed incident light to pass through. The light
intensity reaching a second screen located behind the first
was then recorded, and under the right conditions, it was
possible to observe interference fringes (an intensity 
pattern that oscillates in space), giving unmistakable proof
of the wave nature of light. 

To understand the origin of the interference fringes, we
imagine the light to be perfectly monochromatic (charac-
terized by a single wavelength or frequency) and to be
emitted in a direction perpendicular to the screens from a
point source an infinite distance away (see Figure A). In
that case, the incident light consists of plane waves with
wave fronts parallel to the screen. The light reaching a
specific position on the second screen has traveled in a
straight line from either hole, and the difference in dis-
tance traveled determines the difference in phase of both
light rays reaching the screen. If the difference in distance
traveled by each ray is equal to an integer number of
wavelengths, the waves originating from each hole are in
phase, which means that their instantaneous electric-field
vectors point in the same direction. The total electric field,
which is the vector sum of both fields, then has a magni-
tude equal to the sum of the magnitudes. In contrast, if the
difference in distance is equal to an odd number of half-
wavelengths, the waves are out of phase, meaning that the
electric-field vectors of the rays that passed through the
different slits point in opposite directions and that the
magnitude of their vector sum is less than that of the light
from a single hole. In fact, they can completely cancel
each other out, giving a vanishing intensity. In the first
case, the waves are said to add up constructively, and 
the intensity, which is proportional to the square of the
magnitude of the total electric-field vector, appears bright;
in the latter case, the waves add up destructively, and the
intensity appears dim. Varying the position on the second
screen causes the difference in distance from both holes to
vary and the intensity to go through a series of maxima
and minima, corresponding to, respectively, constructive
and destructive interference. 

In a realistic two-slit experiment, the incident waves are
not perfectly monochromatic, and the source of light is
not a perfect point source. Whether the interference pat-
tern can be distinguished in the recorded intensity actually
depends on the details of the experiment, such as the 
distance between the slits. Loosely speaking, optical
coherence refers to the ability of the light to exhibit such
interference. Mathematically, the contrast is specified by

measurements of the highest (Imax) and lowest (Imin)
intensities. The visibility of the fringes, defined as the
ratio (Imax – Imin)/(Imax + Imin), provides a measure of
light coherence. For laser light, the slits can be as far apart
as the width of the laser beam and still produce an inter-
ference pattern with a visibility near unity. In the quantum
description of the laser, nearly all photons are said to be in
the same state. In contrast, thermal light contains photons
in different states, each of which would give a different
interference pattern with interference fringes at different
positions. The recorded pattern is a sum of all the interfer-
ence patterns, and the fringes at different positions can
wash each other out. 
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The Double-Slit Experiment—A Quantitative Measure of Coherence 
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Figure A. Diagram of Double-Slit Experiment
A plane wave incident on the first screen passes through 
the two slits and is stopped by the second screen. The light
intensity at a specific position on the second screen depends
on the difference in the path lengths traveled by the light
waves emanating from the two slits to that position. If the
path length difference is equal to an odd number of half
wavelengths, the spot appears dim (low intensity); if it is
equal to an integer number of wavelengths, the spot appears
bright (high intensity). The path length difference varies along
the straight line shown in the plane of the second screen.
Along this line, the intensity passes through positions of con-
structive and destructive interference, giving an oscillatory
intensity variation, called interference fringes.



laser system, most particles occupy the same state so that the many-particle system
exhibits the interference pattern of the single-particle system. We call this property
“coherent wave behavior.” As mentioned previously, it is the essential property that 
the weakly interacting BEC has in common with the strongly interacting superfluids 
such as helium. 

Classical or Mean-Field Description of BEC Dynamics. Current atom-trap BECs
have packing fractions of about one part in a million to one part in a billion. At that
diluteness, almost all the neutral atoms of a near-equilibrium system at near zero tem-
perature occupy the same single-particle state. The many-body system can therefore be
approximated by an N-particle wave function consisting of a product of single-particle
wave functions:

(1)  

where the single-particle χ-function is a complex-valued quantity:

(2)

In 1927, shortly after the discovery of quantum mechanics, Erwin Madelung pointed
out that the behavior of the single-particle wave function was analogous to that of a
fluid in which |χ(r;t)|2 plays the role of the single-particle density and (h/m)∇θ is asso-
ciated with a velocity. Similarly, in BEC physics, where the single-particle wave func-
tion is multiply occupied, the phase of the single-particle wave function, θ, plays a cru-
cial role in the theory as the single phase that gives rise to all the coherent wave phe-
nomena discussed below. In particular, its gradient describes the velocity associated with
the dissipationless flow observed in superfluid systems. 

The product state in Equation (1) is a special case of the Hartree-Fock Ansatz for the
many-body wave function of identical particles, and it evolves according to a Hartree-
Fock equation of motion. If the boson particles of mass m experience an external trap-
ping potential V, so that the potential energy of a single boson at position r is V(r), and
if the bosons interact with each other through an interaction potential v, so that a pair of
bosons located respectively at r and r′ experience an additional energy v(r – r′), then
the Hartree-Fock equation takes on the following form:

(3)

Because the interaction between neutral atoms in a BEC has a much shorter range than
the length scales on which the atom-trap BECs vary, we can approximate the interpar-
ticle potential by an effective contact interaction, v (r – r′) → λδ (r – r′), where the
interaction strength λ is proportional to the scattering length a: λ = (4πh2/m)a. In
addition, the number of particles is large enough to allow approximating (N – 1) by N.
We then introduce the condensate field Φ as Φ = N1/2χ so that |Φ|2 represents the 
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particle density, as it does in the single-particle case. With these quantities, the
Hartree equation for atom-trap BECs takes on the form of the celebrated Gross-
Pitaevski equation:

(4)

This equation, first derived by Pitaevski to treat superfluid vortices in a full quan-
tum description, has been very popular in many fields of physics (and even biology).
In spite of its simplicity, it has solutions that exhibit crucial nonlinear physics phe-
nomena such as solitary waves, self-focusing, and self-trapping. As a result, the atom-
trap BECs can also be regarded as new laboratories for studying nonlinear dynamics. 

Describing the physics of BECs by means of the Gross-Pitaevski equation—
Equation (4)—is known as “making the mean-field approximation” or “working in 
the classical approximation.” The term “classical” may appear out of place because
Equation (4) implies that matter has wavelike behavior, and it implicitly contains the
Planck constant. Nevertheless, this equation also follows from the Lagrange equations
of the corresponding classical field theory without any quantization condition. The
Gross-Pitaevski equation gives a classical description of BECs in the same sense that
Maxwell’s equations provide a classical description of photon dynamics. Perhaps most
significantly, the Gross-Pitaevski equation provides the simplest possible description
of a superfluid system, and the mean-field approximation (which for BECs is equiva-
lent to assuming a product wave-function solution) captures many of the essential 
features of superfluidity. For instance, the mean-field treatment predicts a dispersion
relation, or excitation spectrum, that satisfies Landau’s criterion for dissipationless
flow (a criterion to which we refer below). On the other hand, the Gross-Pitaevski
equation is certainly not as general as the phenomenon of superfluidity. Although
some long-range behavior of the helium superfluids and superconductors can be quali-
tatively understood when this equation is invoked, the atom-trap BECs are the only
systems quantitatively described by it. Moreover, the classical description also breaks
down for BECs, for example, when quantum fluctuations become important, as they
do in the experiments described at the end of this article. Those experiments involve
number-squeezed states and the Mott transition from a coherent, or superfluid, state 
to a localized state. 

The Coherent Wave Nature of Superfluidity

The term “superfluidity” was first applied to a very low temperature phase of liquid
helium. In 1938, Peter Kapitza and, independently, John Allan and Donald Misener
discovered that below a critical temperature of 2.2 kelvins, liquid helium-4 flows
without measurable dissipation through capillary tubes. It seemed that this low-tem-
perature phase of helium-4, called HeII, is not governed by the usual laws of classical
fluid dynamics. Subsequent experiments uncovered other counterintuitive phenomena
in HeII, including the fountain effect, perfect heat conductivity, and persistent circular
flow. Superfluidity is now the name for both this collection of phenomena and the
state of matter responsible for them. 

The superfluid state was so unusual and its mechanism so difficult to discern in the
relatively inaccessible medium of a strongly interacting fluid that its origin remained a
matter of continuing controversy for more than two decades.
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Is HeII like a BEC? Noting that helium-3, the fermion cousin of helium-4, did not
undergo a phase transition to a superfluid at similar temperatures, Fritz London 
suggested in 1938 that the HeII transition is intimately related to the boson nature of 
the helium-4 atoms. He further proposed that the HeII superfluid is, in a generalized
sense, a BEC. Of course, being a strongly interacting fluid, the helium system cannot
be characterized by the assumption that all atoms occupy the same single-particle 
state. Nevertheless, London (1938) argued that “some of the general features of the
degenerate ideal Bose-Einstein gas remain intact, at least qualitatively, for this liquid.”
He also offered support for his thesis by calculating the BEC critical temperature for
the helium density, which came out to 3.13 kelvins, remarkably close to the HeII
transition temperature of 2.12 kelvins, measured in 1933. Although the latter agreement
is largely fortuitous, London’s words sound almost prophetic in retrospect: He hinted
that the superflow in HeII was a macroscopic quantum current brought about by
changes in the boundary conditions. 

The Two-Fluid Description of HeII. Following a different track, Lev Landau and,
independently, Laszlo Tisza (who was, in fact, partly motivated by London’s views)
proposed the two-fluid model of HeII, in which one component is an inviscid, irrota-
tional superfluid that does not carry entropy. This model explained the observed
effects and also correctly predicted new superfluid phenomena, such as second sound.
Landau used very general assumptions to derive a criterion for superfluidity and an
expression for the critical velocity above which dissipation would set in. The critical-
velocity calculation, although ultimately incorrect, captured the main features of 
persistent flow, and a generalized form of the Landau criterion is still of great use in
explaining critical velocities for superfluidity. Nicolai Nicolaevich Bogoliubov
showed that a weakly interacting BEC satisfies Landau’s criterion for superfluidity,
but Landau continually resisted the notion that the superfluid should be associated
with a BEC. 

The BEC Description Revisited. Finally, Oliver Penrose (1951) and then 
Penrose and Lars Onsager (1956) proposed the currently accepted point of view that
superfluidity is a macroscopic manifestation of coherent (hence, single-particle-like)
quantum-wave behavior. This description does not contradict the two-fluid model 
but supersedes it in the sense that the coherent quantum-wave behavior includes 
phenomena, such as quantized vortices and Josephson effects, which find no 
explanation in the two-fluid model.

As previously mentioned, the single-particle quantum wave behavior, which is 
compatible with and can be described as fluidlike behavior, had been pointed out by
Madelung in 1927. In his pioneering paper of 1951, Penrose derived the equation for
the off-diagonal density matrix of the many-body helium fluid and then drew on
Madelung’s analysis of the single-particle wave function to associate the long-range
part of that off-diagonal density matrix with the superfluid component of the two-fluid
model. In essence, Penrose identified quantum wave coherence as the essential feature
responsible for both superfluidity and the BEC-like behavior conjectured by London. 

As the understanding grew that superfluidity was an outcome of quantum wave
coherence, the intimate connection between superfluidity and superconductivity was
realized. We now understand both phenomena to be caused by coherent quantum-wave
behavior, that is, many identical particles or units whose behavior can be described by
the same single-particle wave function. For a superfluid, the single unit that exhibits
the quantum wave behavior is a boson particle; for a superconductor, it is a pair of
fermions. Much as we regard a superfluid as a BEC of boson particles, we can regard a
superconductor as a BEC of fermion pairs. Not surprisingly, therefore, the fields of
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superfluidity and superconductivity share a number of phenomena that stem directly
from their coherent wave nature. Two of these coherent phenomena, Josephson junc-
tions and quantized vortices, have recently been studied in atom-trap BECs and are
briefly described next. 

Josephson Junctions. In the 1960s, the physics of superconducting Josephson junc-
tions provided evidence for the coherent wave nature of superconductors. The Josephson
junction is a weak link, such as a thin insulator, connecting two indistinguishable super-
fluids or superconductors—see Figures 2(a) and 2(b). One manifestation of the
Josephson “effect” is an alternating current flowing through the weak link when both
sides of the junction are kept at different chemical potentials by, for instance, the intro-
duction of a potential difference over the junction. 

In an ordinary electronic circuit, the potential difference sets up a direct current (dc),
which flows from the region of high chemical potential to that of low chemical poten-
tial. In contrast, in a coherent-wave superfluid system, the rate for bosons or fermion
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(d) BEC Josephson Effect
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Figure 2. Josephson
Junctions and the
Josephson Effect for
BECs
The diagrams show (a) two
superconductors separated by
a thin barrier and (b) the over-
lap of the coherent single-
particle wave functions that
describe each superconductor
in the neighborhood of the
junction. In 1962, Brian
Josephson showed that, under
certain conditions, quantum
mechanical tunneling of elec-
tron pairs could occur through
the barrier. If the two wave
functions differ by a phase, a
direct current of electron pairs
will flow through the barrier, or
junction. If a voltage is placed
across the junction, the phase
difference varies periodically in
time, causing an alternating
current to flow across the junc-
tion. (c) A neutral-atom BEC
trapped in a double-well poten-
tial behaves like a supercon-
ducting Josephson junction.
The potential barrier created by
a laser beam acts like the insu-
lating barrier between the
superconductors. (d) The BEC
junction is predicted to exhibit
the Josephson effect. For
instance, a sudden change in
the chemical potential of one of
the BECs would initiate an
oscillation in the number of
particles in each well. The fre-
quency of the oscillation is
determined by the difference of
the chemical potentials.
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pairs to tunnel through the potential barrier of the junction depends sinusoidally on the
phase difference between the single-particle-like wave function on either side of the
junction. That phase difference increases linearly with time in the presence of a poten-
tial difference, giving an alternating current that oscillates at the frequency correspon-
ding to the chemical potential difference. 

In the original condensed-matter Josephson junctions, the superfluids were supercon-
ductors. In such cases, the bosons tunneling through the junction are electron pairs, and
the current is a charge current, which is easily and accurately measured. In helium
superfluids, on the other hand, the weak link is difficult to make, and the observation of
a weak neutral current presents a nontrivial experimental challenge, which was only
recently met (Packard 1998). 

The direct analogue of the Josephson junction in atom traps is an atomic BEC
trapped in a double-well potential—see Figures 2(c) and 2(d). The challenge of observ-
ing the Josephson effect in this system, however, is similar to the problem encountered
in observing Josephson oscillations in helium superfluids: How can one measure small-
amplitude oscillations of neutral-particle populations? In the last section, we show how
atom-trap BEC technology made possible a unique solution to the problem of observing
Josephson phase dynamics. 

Quantized Vortices. Quantized vortices are another coherent wave phenomenon
unique to superfluids and superconductors. In classical fluids, vortices are long-lived
flow patterns in which the particles whirl around an axis, all with the same angular
momentum. In a superfluid, a superflow that similarly whirls around an axis can be set
up by a characteristic variation of the coherent wave function: the phase of the wave
function varies cylindrically around the vortex axis. For the wave function to be single-
valued, it must return to its initial value after a full rotation around the axis; that is, its
phase must have changed by 2π or by 2πn, where n represents an integer number. This
constraint implies that the angular momentum of superfluid vortices is quantized with
allowed values equal to nh—see Figure 3(a). 

Quantized vortices in helium were observed by William Vinen and by George Rayfield
and Frederick Reif, and their observations provided further support for the coherent wave
behavior of the helium superfluid. In atom-trap BECs, the long-lived metastable vortex
structures were created and studied in laboratories at the Joint Institute for Laboratory
Astrophysics (JILA) at Boulder, Colorado, in the groups of Wieman and Cornell; at the
École Normale Supérieure in Paris, in the group of Jean Dalibard; at MIT in the group of
Ketterle; and at Oxford University, England, in the group of Chris Foot—see Figure 3(b).
A direct measurement of the angular momentum of the vortices, by Dalibard’s group,
experimentally confirmed the quantization of BEC vortices. In addition, at MIT, rapid
advances in BEC technology led to the creation of vortex lattices (also called Abrikosov
lattices) in atom-trap BECs with up to 160 vortices and to the detailed observation at both
MIT and JILA of the intricate dynamics of vortex formation and decay. 

BEC Interference—A Demonstration of Wave Coherence

In optical systems, long-range phase coherence is easily demonstrated through the
double-slit experiment. In fact, the sharpness of the interference fringes produced in that
experiment is used as the standard measure of optical coherence. In contrast, condensed-
matter systems give mostly indirect signatures of wave coherence—quantized vortices
and Josephson effects—although observations and applications of temporal interference
in superconductors do exist (for example, in superconducting quantum interference
devices, or SQUIDS). 
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Thus, when Ketterle’s group at MIT observed the spectacular interference pattern
shown in the opening illustration, they brought an unusual message: BECs are superflu-
ids that can manifest their long-range phase coherence in an optical-laser-like manner of
spatial interference. Michael Andrews and collaborators later (1997) argued that the
interfering BEC experiment demonstrated the first atom laser (albeit in a form that, as of
yet, is not necessarily useful to applications). Their demonstration suggests that the
simultaneous appearance of superfluid and laserlike aspects of long-range phase coher-
ence might one day yield particularly potent applications of BECs. 

The MIT Experiment. Figure 4 outlines the experimental procedure used by the
MIT group. First, an off-resonant laser beam is passed through the center of an atom
trap, which effectively creates a double-well potential. The atoms are then cooled and
Bose-condensed into two BECs, one on either side of the potential barrier—see
Figure 5(a). Because the height of the barrier significantly exceeds the chemical poten-
tial of either BEC, the two BECs are independent. 

When the trapping potential was switched off, the two BECs expanded freely and
started overlapping spatially. Using two laser pulses in succession, the MIT group
imaged the local density of atoms in a 100-micrometer-thick slice within the region of

148 Los Alamos Science Number 27  2002

Atom-Trap BECs

Figure 3. Quantized
Vortices
(a) In a superfluid, the phase of
the wave function for a vortex
must increase by 2π on each
revolution, which implies that
the angular momentum of the
vortex must be an integer multi-
ple of hh, or nhh. (b) Several exper-
imental groups have created
and imaged quantized vortices
in atom traps. The transverse
absorption images (Madison et
al. 2000) are of a condensate of
about 105 rubidium-87 atoms at
a temperature below 80 nK. This
condensate has been stirred
with a laser beam at various
rotational frequencies. Above a
critical rotational frequency,
vortex filaments appear. Plots 1
and 2 show the variation in opti-
cal thickness along the horizon-
tal axes of the clouds imaged in
plots 3 and 4, respectively.
The cloud stirred at 145 Hz
(shown in plot 3) contains no
vortex filament, whereas the
cloud stirred at 152 Hz (shown
in plot 4) contains one vortex 
filament. In plots 5, 6, and 7,
the condensate was stirred at
rotational frequencies of 169,
163, and 168 Hz, respectively.
(Reproduced with permission from 

The American Physical Society.)
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overlap. The first laser pulse pumped the BEC atoms in the selected slice from state |1〉
to a different hyperfine state |2〉. The second laser, tuned near a resonant transition from
state |2〉 to state |3〉 and pointing more or less perpendicular to the plane of the slice,
imaged the density of atoms in state |2〉. The image showed a highly visible, regular pat-
tern of clearly separated interference fringes of macroscopic size (40 micrometers)—see
Figure 5(b). The visibility of the fringes (defined in the box “The Double-Slit
Experiment”) ranged from 20 to 40 percent. By characterizing their optics, the experi-
mentalists inferred that the actual visibility of the density fringes ranged from 50 to
100 percent. The density fringes are defined as (ρmax – ρmin)/(ρ max + ρmin), where ρmax
and ρmin denote the maximum and minimum densities if observed with an ideal imaging
technique. The high visibility of the observed fringes indicates that the entire many-
body system behaves as a coherent wave. 

What Produces the Interference Fringes? Unquestionably (by definition, in fact),
macroscopic interference fringes indicate coherence in the usual optical sense. But how
the observed interference fringes relate to the coherence of the expanding BECs is a
matter of considerable subtlety, as will be explained. Under the experimental conditions
of independent BECs, the single-particle density matrix, as we show below, does not
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Figure 4. Procedure for
Creating BEC Interference 
In the BEC interference experi-
ment conducted at MIT
(Andrews et al. 1997), sodium
atoms were contained in a
cigar-shaped trap (stage 1).
In the second stage, a laser
beam focused on the center of
the initial trap repelled the
atoms from that region, creating
an overall atomic potential that
has a double-well shape. In the
third stage, the atoms were
cooled below the critical tem-
perature TC of the BEC phase
transition. The height of the
potential barrier separating 
the wells greatly exceeded the
thermal energy kBTC (where kB
denotes the Boltzmann con-
stant) and the chemical poten-
tials of the BECs that are
formed in the left (L) and right
(R) wells. (The wave functions
for the two BECs are labeled χL
and χR.) Under these condi-
tions, the two BECs are inde-
pendent of each other in the
sense that they cannot “know”
each other’s phase. When the
trapping potential is suddenly
removed in stage 4, both BECs
expand and then overlap.
Images of the atomic density of
the overlapping BECs show
macroscopic interference
fringes of high visibility.

Stage 1:  Sodium atoms are contained in a single-well trapping potential.

Stage 2:  A laser beam repels the atoms and creates a trapping potential with a double-well shape.

Stage 3:  The atoms are cooled below the critical temperature of the phase transition to BECs.

Stage 4:  The trapping potential is suddenly removed, and the BECs expand and overlap.

R

R



exhibit interference. Why then does the recorded image show fringes? The resolution, as
we show for a special case, depends on the fact that the image does not record the sin-
gle-particle density. 

The Case of BECs with Definite Particle Number. As reported by Andrews et al.
(1997), the potential barrier separating the two BECs was five times higher than the
energy corresponding to the critical temperature for the BEC phase transition and 
50 times higher than the chemical potentials of the BECs in each well. Under those con-
ditions, the state of the double-well BEC system is indistinguishable from that of two
BECs that were condensed in separate traps at an infinite distance from each other and
then brought together. In principle, we can therefore know exactly how many particles
occupy each of the two BECs. That is, the system is in a number state. The single-parti-
cle density of this double-well number state ρ1(N) does not exhibit interference, a point
we now demonstrate for a simplified double-well number state with only two particles. 

We call the single-atom state centered in the right well χR(r) and the single-atom
state centered in the left well χL(r), where r denotes the center-of-mass position of the
trapped atom. Thus, a two-particle number state with one atom in each well is represent-
ed by a wave function Ψ(N):
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Figure 5. Sodium Atom
BECs and Their Interference 
(a) Phase contrast images of a
single Bose condensate (upper
panel) and double Bose conden-
sates were taken in the magnetic
trap of the MIT group. An argon
ion laser that was focused into
the center of the trap created a
double-well potential. Changes
from 7 to 43 mW in the power of
the laser-light sheet caused the
distance between the two con-
densates to vary. (b) The interfer-
ence pattern of two expanding
condensates was observed after
a 40-ms time of flight for two 
different powers of the argon-
laser-light sheet (raw-data
images). The periods of the
fringes were 20 and 15 µm;
the laser powers were 3 and 
5 mW; and the maximum absorp-
tions were 90% and 50%,
respectively, for the left and right
images. The fields of view were
1.1 mm horizontally by 0.5 mm
vertically. The horizontal widths
were compressed fourfold, a con-
dition that enhances the effect 
of the fringe curvature. For the
determination of the fringe 
spacing, the dark central fringe
on the left was excluded.
(Reprinted with permission from Andrews et

al. Science 275, pages 638 and 639.

Copyright 1997 American Association for the

Advancement of Science.) 



(5)

When the external potential is switched off, the two-particle wave function, to a close
approximation, remains of the form in Equation (5), with χL and χR evolving as freely
expanding single-particle wave functions that are mutually orthogonal. The correspon-
ding single-particle density ρ1(N) at a given time t,

(6)

is equal to an incoherent average of the densities of the individual expanding single-
particle wave functions. Generally, the single-particle densities expand smoothly—a
free-particle Gaussian wave function (for instance, if the χ-wave-functions start out as
ground-state functions of harmonic oscillator potentials) remains Gaussian—so that
ρ1(N) (r; t) does not exhibit spatial oscillations. 

The Case of a Mutually Coherent State of the Double-Well System. In contrast,
had a single-well system containing both particles in its center-of-mass ground state
been split adiabatically, the resulting double-well system would be in a mutually coher-
ent state. This particular mutually coherent state would be a product of single-particle
wave functions of the type 2–1/2[χL (r; t) + exp(iα) χR (r; t)], where α denotes the phase

difference that evolved between the right and left wave functions during the adiabatic
splitting of the wells. This two-particle, mutually coherent wave function takes the form 
where the label C stands for coherent. The mean field or classical description—see
Equation (1)—of the double-well BEC assumes such mutual coherence. The single-
particle density of the mutually coherent, freely expanding two-particle system reads

where c.c. is the complex conjugate of the previous term. Far from the potential minima
of the initial wells, the amplitudes of the expanding wave functions vary slowly in
space, so that we can approximate those amplitudes as χR(r; t) ≈ χ exp[iθR(r; t)] and
χL(r; t) ≈ χ exp[iθL (r; t)], and the single-particle density in the far region becomes

(9)

Thus, in addition to the densities of the expanding single-particle wave functions,
ρ1(C)(r;t) also contains an α-dependent term—namely, the interference fringes—that
varies sinusoidally with the difference of the position-dependent phases of the overlap-
ping χR and χL functions. The expression in Equation (8) is quite general; the single-
particle density of an N-particle BEC distributed over two wells in a mutually coherent
state takes on the form of Equation (9) in the far region.
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Heuristic Derivation of the Interference Fringe Pattern. What is the geometry and
spacing of the interference fringes that would be produced by this mutually coherent state?
We offer a heuristic derivation of the phase of a freely expanding single-particle state.
Classically, a particle that has traveled a distance r in a time t has a velocity v = r/t. In the
spirit of the Madelung description, we associate the gradient of the phase θ with mv/h, and
we find dθ/dr = (mr/ht), so that θ = (m/2h)(r2/t) + C, where C denotes a constant, inde-
pendent of r. Now we suppose that the left and right BECs are sufficiently alike so that we
can assume that their phases in the expansion evolve with the same constant C. In that
case, the difference between the phases of the amplitudes χR and χL evaluated at a vector
distance r from the center of the right well and rL from the center of the left well is 

θR – θL = (m/2ht)[r2 – r2
L ]2 = – (m/2ht)[2d ⋅ r + d2]  , (10)

where the vector distance d separates the centers of the potential wells and r2 – r2
L = 

–2r ⋅ d – d2 (see Figure 6). The high-density regions of the interference fringes are
planes perpendicular to d at a regular spacing of λ = ht/(md). The measured density pat-
tern for the density in Equation (9) is

(11)

and the value of α can be inferred from the positions of the interference fringe planes. 
A more careful derivation of the phases θR(L) gives corrections, but the above expres-

sions are essentially correct in the regions imaged in the interfering BEC experiment.
The experimental images do indeed reveal planar interference fringes, separated by a
distance λ = ht/(md).

Resolving the Origin of the Interference. The experiment clearly indicated coher-
ence, and the image agrees with the single-particle density of the mutually coherent
double-well system. However, the experimental system was prepared not in a mutually
coherent state, but in a number state analogous to that described by Equation (5). In that
state, given that the single-particle density ρ1(N) in Equation (6) does not exhibit inter-
ference, why does the recorded image show fringes like those from the coherent single-
particle density in Equation (11). The resolution of this apparent puzzle lies in the fact
that the image does not record the single-particle density. Instead, the experiment probes
the multiparticle density. Specifically, we cannot interpret the image of the N-particle
system as N independent measurements of the single-particle density. But we can
assume that the measurement captures the N-body system in a “likely” configuration;
that is, the observation of a particle at r1, another at r2, and so on, indicates that the state
of the system corresponding to the N-particle density ρN(r1, r2, …, rN) = |Ψ (r1, r2, …,
rN)|2 has a relatively high probability. 

We use the special case of two particles in a double-well potential to illustrate the dif-
ference in probing the N-particle rather than the single-particle density. We assume the
two-particle double-well system is prepared in the number state of Equation (5). We
detect the particles at a time t during a  period that is short on the time scale on which the
single-particle wave functions χL and χR expand. The probability that one particle is
recorded at r1 and the other at r2 is proportional to the two-particle number-state density:

ρ χ α1
2  21  2C cos( ) ( ) = + ( ) ⋅( ) + ( ) −[  ]{  }r  r d;  ,t m t m t dh h
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Figure 6. Geometry of
Interference Fringes
The diagram shows the interfer-
ence fringes in the image of two
expanding BECs that were 
initially trapped in the right (R)
and left wells (L) of a double-well
potential. As defined in the text,
the r-vector denotes the position
relative to the center of the right
well, and the d-vector denotes
the relative position of the cen-
ters of both wells. The high-
density regions of the interfer-
ence fringes are planes oriented
perpendicular to d. At a time t
after releasing the BECs,
the interference fringe planes 
are separated by a distance 
λ = ht /(md ). The actual positions
of the fringes depend on the
phase difference α of the initial
BECs (if the BECs are phase
coherent, χ = χL + eiαχR).

L R
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Assuming that r1 and r2 are located in the region where |χL(r1; t)| ~ |χL(r2; t)| = χ,
the two-particle density defined in Equation (12) takes on the form

which contains the typical oscillatory contribution seen in Equation (9) describing an inter-
ference pattern. Thus, although the system is in a number state and the single-particle den-
sity does not exhibit interference, the two-particle density ρ2(N) does show interference. 

The sinusoidal contributions in Equation (13) arise from the interference of the two
distinct two-particle events illustrated in Figure 7. In one event, the particle detected at r1
was initially in the right well, whereas the particle detected at r2 originated from the left
well. In the second event, the situation is reversed: The particle detected at r1 originated
from the left well, whereas the particle detected at r2 originated from the right well.

ρ χ θ θ θ θ2
4 1N t  t t t t( ) ( ) ≈ + ( ) − ( ) −[{ ( ) − ( )( )]}r r r r r r1 2 1 1 2 2, ; cos ; ; ; ;  ,R L R L
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Figure 7. Origin of the Two-
Particle Interference in
Equation (13) 
This schematic illustrates the ori-
gin of the interference pattern in
the two-particle density for an
expanding two-particle system
that originates in a number state
of a double-well potential. (a) The
origin of the coordinate system is
the center of the right potential
well. (b) In event 1, the particle
detected at r1 originates from the
right well; the particle detected at
r2, from the left well. (c) In event
2, the particle detected at r1 origi-
nates from the left well, whereas
the particle detected at r2 origi-
nates from the right well.
Because the two-particle wave
function consists of a superposi-
tion of terms that correspond to
the classical trajectories shown
in (b) and (c), these events can
interfere.

(13)



Using Equation (10) for the phase difference between the two single-particle wave
functions at a position r, θR(r) – θL(r) ≈ – (m/2ht)[2d ⋅ r + d2], we find that the two-
particle distribution depends only on the relative position r1 – r2,

(14)

Whereas the likelihood of detecting the first particle at position r1 is independent of
r1 in the far region ρ1(N) ≈ χ2, the likelihood of detecting a second particle at r2 is
greater near the planar regions d ⋅ (r1 – r2) = n(ht/m), where n denotes an integer.
Note that the planar regions of maximal ρ2(N)-values resemble the interference fringes
of ρ1(C) in Equation (11), namely, the single-particle density of the expanding, mutual-
ly coherent two-particle double-well system. In fact, the fringe patterns for the two-par-
ticle density will be identical to those of an equivalent mutually coherent system, pro-
vided the relative phase α is chosen so that the fringes of that equivalent system over-
lap the position where the first particle was detected. Because the position of the first
particle is undetermined until measured, we can say that it is the act of determining 
the first particle’s position that fixes the value of the relative phase of an equivalent 
mutually coherent system. The two-particle number-state probability distribution then
resembles the product of one-particle probability distributions of the equivalent mutually
coherent system. That equivalence is a general feature: The more particles detected in
the image of an expanding number-state double-well BEC, the more the outcome of
such measurement resembles that performed on a mutually coherent double-well BEC.
The relative phase of the equivalent mutually coherent BEC system can be extracted
from the image but cannot be determined beforehand. 

The equivalence to a mutually coherent state with a value of the phase difference
that is established by the act of measurement is familiar from the observation of inter-
ference of independent lasers (Pfleeger and Mandel 1967) and of the dc Josephson
effect (Anderson 1986). 

Relative Phase Dynamics for Two N-Particle BECs. Our derivation of the num-
ber-state two-particle density and its equivalence to a mutually coherent state density
of undetermined relative phase is not easily generalized to a number-state double-
well system with larger particle numbers. Instead, we can apply the elegant descrip-
tion developed for the relative phase dynamics of Josephson junctions. In this
description, the dynamics between the two weakly linked superfluids is cast in terms
of only two variables: α, the relative phase, and m, half the difference of the number
of particles contained in each well. In fact, m and α are quantum numbers, and the
number states are the eigenstates of m. We denote by |m〉 the number state of a dou-
ble-well system with N-particles per well, of which N – m occupy the left well and 
N + m, the right well. 

An alternative set of basis functions is provided by states of good relative phase |α〉
= N–1/2∑m exp(iαm)|m〉. The transformation from the |m〉-basis to an |α〉-state represen-
tation is therefore a Fourier transform, somewhat analogous to the transformation
between the traditional momentum and coordinate representations. Just as coordinates
and momenta are conjugate to each other, m and α are conjugate variables. The many-
body state can be expanded in either the |α〉-states or the |m〉-states, |Ψ〉 = ∫dαΨ(α)|α〉 =
∑mΨm|m〉, where Ψ(α) and Ψm are equivalent to the coordinate (x) and momentum (p)
representations of a single-particle state. Generally, the Ψ wave function implies a
spread both in the m and α variables: ∆m = (〈(m – 〈m〉)2〉)1/2, ∆α = (〈(α – 〈α〉)2〉)1/2,
where 〈 〉 denotes the expectation value. As conjugate variables, ∆m and ∆α satisfy the

ρ χN t m t, , ;  .2
4 1r r d r r1 2 1 2( ) ≈ + ( ) ⋅ −( )[ ]{  }cos h
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Heisenberg uncertainty relation ∆m × ∆α ≥ 1, whereas ∆x and ∆p satisfy the relation
∆x × ∆p ≥ h in single-particle quantum mechanics. 

To continue our comparison of BEC interference experiments with single-particle
quantum mechanics, we note that the establishment of a relative phase between inter-
fering BECs is the analogue of a position measurement on a particle in a plane-wave
state. When the plane wave has a well-defined momentum, then ∆p = 0 and ∆x → ∞.
The latter expression means that the coordinate has maximum uncertainty, and there-
fore, a measurement of x could yield any value. Likewise, in the initial state of the
interfering BEC experiment, ∆m = 0, and the determination of α achieved by the imag-
ing of the expanding BECs could yield any value. When the measurement is per-
formed, however, the wave function collapses to an eigenstate of α. 

Squeezing the Numbers in BECs—Macroscopic Quantum
Fluctuations

As mentioned previously, the number-phase description in terms of the α or m quan-
tum eigenvalues is familiar from the treatment of Josephson junctions. The application
of the number-phase description to the problem of double-well BECs then reveals an
intimate connection between the physics of BEC interference and Josephson physics.
However, the BEC interference experiment conducted at MIT lacks the weak link
through which the superfluids can exchange their boson particles. Consequently, it is 
not exactly a BEC-Josephson experiment. In a subsequent effort, the Kasevitch group 
at Yale used a related setup and succeeded in inducing and controlling such reversible
superflow between multiple BECs. The Yale experimentalists achieved this goal by 
trapping the BECs in the potential minima of an optical lattice—a trapping potential 
that oscillates sinusoidally in space as E02 sin2(kx)—and by lowering and raising 
the potential barriers separating the BECs through variations of |E0|2 . Most important,
the Yale group probed Josephson physics by observing variations in the interference 
pattern of the expanding BECs after switching off the optical-lattice potential. 
The sharpness of the interference fringes revealed the uncertainty in relative phase,
∆α, of the expanding BECs. In particular, when the barrier height had been sufficiently
increased before the BECs were released, the fringes observed in the image of the
expanding BECs became fuzzy, an indication that the uncertainty in the phase values 
of the initial BECs had increased markedly. This increase is expected as the number
uncertainty decreases. As we argue below, this is a genuine quantum fluctuation effect
observed in a macroscopic system. To set the stage, we start by elucidating the role of
the quantum fluctuations in multiple-well BEC physics. 

Quantum and Classical Physics of Double-Well BECs. As in Equation (1), the
classical or mean-field description of the N-particle double-well system, the many-body
wave function is a product state: Ψ(r1, r2, …, rN;t) ≈ χ(r1;t)..., χ(rN;t), where each 
single-particle wave function is a linear superposition of left-well (χL) and right-well
(χR) wave functions,

χ(r;t) = 1/(2N)1/2[(N – m(t))1/2χL + eiα(N + m(t))1/2χR]  , (15)

and α and m are well-defined parameters. We use the same notation as in the number-
phase description because the physical interpretation of α and m is the same as that of
the quantum eigenvalues introduced above. In fact, α(t) and m(t) in Equation (15) are
the expectation values of the quantum treatment of the number-phase dynamics. The
classical treatment can then describe superfluid effects, the essence of which relies on
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the existence of a well-defined phase—see Equations (1) to (4) and the section “The
Coherent Wave Nature of Superfluidity”—but it cannot account for behavior such as the
collapse to a random value of the relative phase in the imaging of interfering BECs.
More generally, contrary to predictions of classical mechanics, the quantum treatment
predicts different outcomes of identical measurements on identically prepared systems.
Measures of such quantum randomness are the standard deviations, such as the devia-
tions ∆α and ∆m introduced earlier, that quantify the range of quantum fluctuations. For
sufficiently large numbers of atoms, ∆m can take on values that are large enough for the
fluctuation range to be called “macroscopic.”

Weakly Linked BECs. When the barrier separating the two potential wells in the
double-well BEC is lowered to an appropriate value, atoms can penetrate the barrier,
which thereby provides the weak link that allows the left and right BECs to exchange
particles. As in the description of BEC interference, we define a phase for each BEC
and describe the possible particle exchange in terms of the canonically conjugate vari-
ables that represent the difference of the condensate phases, α, and half the difference of
the particle population, m, occupying the individual BECs. The inter-BEC particle
exchange gives rise to an effective tunneling energy of the usual Josephson form,

(16)

We expect the value of EJ to be roughly proportional to the number of particles (N)
per well, to depend weakly on the number difference m, and to be extremely sensitive to
the height of the potential barrier separating the BECs. As the barrier height increases,
the tunneling of particles is restricted, a limitation corresponding to a decrease in the
value of the EJ -parameter in Equation (16). In what follows, we write 
EJ = 2NJ, where J denotes the tunneling energy per particle. The tunneling energy, mini-
mized by putting α = 0, favors a well-defined value of the phase difference in the
ground state and, hence, favors the establishment of a definite phase difference (the
superfluid limit). In contrast, the usual interparticle interactions, if repulsive, favor a
well-defined value of m. To see that, we note that the interparticle interaction energy
scales as the number of interactions. The NL-particles (in the left BEC) experience
NL(NL – 1)/2 ≈ NL

2/2 interactions. Similarly, the NR-particles (contained in the right
well) undergo NR

2/2 interactions. Assuming that the interaction energy per particle, U, is
approximately the same in each well and using NL = N – m and NR = N + m, we write
the total interaction energy as

E EJtun cos= − ( )α  .
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Figure 8. The Bose-
Hubbard Model
The diagram shows an optical-
lattice potential occupied by
atoms of integer spin. The
interactions between the atoms
include a hopping or tunneling
interaction and a repulsive
interaction between atoms at
the same site.

U

V0 sin2(kx)

J

HB-H = Um2 – 2JNcosα
      J = Tunneling energy per particle

     U = On-site interaction energy per particle



.                                                       (17)

In contrast to the tunneling energy, Eint takes on its minimum value at m = 0, corre-
sponding to the BEC number state with NR = NL = N. The contribution to the energy
that stems from the phase-number dynamics (the sum of interaction and tunneling ener-
gies after the constant UN2-term has been discarded) is then equal to

(18)

Classically, the position of lowest energy is m = 0, α = 0. Quantum mechanically, it fol-
lows from Heisenberg’s uncertainty principle that m and α, being conjugate variables,
cannot be determined simultaneously to absolute certainty. We now use the double-well
Bose-Hubbard Hamiltonian in Equation (18) as a starting point to indicate how weakly
linked BECs can be regarded as a laboratory for exploring both the classical dynamics
and the quantum nature of Josephson junctions. A schematic representation of the indi-
vidual terms that contribute to this Hamiltonian is shown in Figure 8.

Probing Josephson Physics in Weakly Linked BECs. The Bose-Hubbard
Hamiltonian in Equation (18) is the generic form of the Hamiltonian that governs the
physics of Josephson junctions. We can expect, therefore, that the atom trap becomes a
new laboratory for studying Josephson effects. Although this physics has been studied
intensely in condensed-matter environments, the new parameter range and technology 
of the BEC traps give a new twist to the study of Josephson-junction physics and other
known phenomena, as well as the opportunity to study quantum fluctuations and,
perhaps, to discover novel applications. 

A sudden change in the depth of one of the wells or in its particle number can
“nudge” the many-body system out of equilibrium, initiating a collective excitation in
which the expectation value of the well populations oscillates. This phenomenon is
called Josephson oscillations. On the topic of probing quantum behavior, it is interesting
that the parameters in Equation (18) can be controlled experimentally: Variations in the
trapping potential can alter the values of U and J. Clearly, the atom-trap technology
gives unusual control over the Josephson junction, providing new knobs that can both
initiate Josephson oscillations and vary the quantum fluctuations. The crucial question
of whether oscillations and fluctuations can be measured in cold-atom BECs was
answered, in part, by the Yale experiment. 

What are the obstacles that the BEC technology faced in probing Josephson physics?
In superconductors, Josephson effects are routinely studied by measurements of the
weak supercurrent. Such measurement of a charged particle can be achieved relatively
simply and accurately. In systems of neutral particles, on the other hand, the observation
of a weak current represents a much greater challenge, and in helium fluids, a Josephson
current was only recently observed (Packard 1998). By the same token, in the neutral-
atom traps, current atom-counting techniques are not sufficiently accurate to allow
observing small-amplitude population oscillations. Numbers of atoms in a typical BEC
are measured with a relative accuracy of only about 10 percent. This low accuracy 
renders the technique unsuitable for observing Josephson oscillations of atomic-trap
populations in the linear regime (number oscillations with a magnitude of 1 percent or
less of the total number of trapped atoms). Instead of measuring a population imbalance,

H Um JN= − ( )2 2 cos  .α

E U N N U N mint R L= +[ ] ≈ +[ ]( / )  .  2 2 2 2 2
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we might try to observe the relative
phase of BECs, which gives a com-
plementary view of the physics; for
instance, the expectation value of
the relative phase oscillates at the
same frequency as the population
imbalance or current in the
Josephson oscillation. The BEC
interference experiment conducted
at MIT illustrated that the relative
phase can be measured from
recorded images of expanding
BECs. This measurement, however,
is destructive and yields a value for
the phase at a single time. Whether
this technique could be used to
probe the time evolution of the
phase is not evident. In addition,
the imaging of BEC interference in
the double-well system gives only a
single value of the phase, whereas a
measurement of the range of quan-
tum fluctuations requires a record
of the phase distribution. 

The Yale experiment resolved the problem of probing the phase distribution by
imaging the interference of many simultaneously expanding BECs, which had been
weakly linked before the trapping potential was released. The resulting image is sensi-
tive to the distribution of the complex phase values of the BECs. If the phases of the
BECs are strongly correlated—they all have approximately the same value, for
instance—then the interference of each pair of BECs can add up in phase and give an
overall pattern with bright and sharp fringes. In contrast, if the phases of the weakly
linked BECs are randomly distributed, then their values, determined by the act of
imaging, differ widely. As a consequence, the fringes corresponding to the interfer-
ence of different pairs of BECs do not overlap, so that interference washes out. The
Yale experiment imaged the density of 12 expanding BECs that had been initially
trapped in the adjacent potential wells of a linear optical lattice and weakly linked
before the optical-lattice potential was released (see Figure 9). In such an optical lat-
tice, the centers of mass of adjacent BECs are all separated by the same distance (half
the wavelength of the light that creates the standing wave pattern of the lattice poten-
tial). By measuring the amplitude and fringe sharpness (defined as the ratio of spatial
width to the distance separating the fringes) observed in imaging the expanding BECs,
the Yale group quantified the uncertainty of the relative phase values. 

As they had ramped up the height of the potential barriers before releasing the
BECs, the Yale group observed a marked decrease in the sharpness of the fringes in
the expanding-BEC images. The measured sharpness was in quantitative agreement
with numerical simulations that were based on the ground-state phase uncertainty. The
assumption that the many-body system has reached its ground state before the trap-
ping potentials are switched off is reasonable because the change in potential barrier
was effected adiabatically in the experiments. In a ground state, the uncertainties of
conjugate variables generally reach the Heisenberg limit, which in this case would
mean that ∆m × ∆α ≈ 1. Thus, from their measurements and the agreement with the
predicted values of phase uncertainty, the Yale group inferred that their observed

158 Los Alamos Science Number 27  2002

Atom-Trap BECs

Vertical position (pixels)

D
en

si
ty

 (
ar

bi
tr

ar
y 

un
its

)

(a′)

(b′)

(c′)

(a)

(b)

(c)

50µm

Figure 9. Formation of
Number-Squeezed States
in an Atom-Trap BEC
The sequence of absorption
images, (a)–(c), and the associ-
ated density cross sections,
(a′)–(c′), show atoms released
from optical lattices of increas-
ing depth: U0 = 7.2Erecoil,
U0 = 18Erecoil, and U0 =
44Erecoil, respectively. In (a),
the two-peaked structure is 
due to interference between
atoms released from different
lattice sites. As the well depth
increases and the tunneling
rate decreases, the interference
pattern becomes progressively
blurred, reflecting greater
phase uncertainty and the 
formation of number-squeezed
states.
(Reprinted with permission from Orzel et

al. Science 291, page 2389. Copyright 2001

American Association for the

Advancement of Science.)



increase in phase uncertainty implied a similar decrease in number uncertainty ∆m.
By analogy with a similar reduction of uncertainty in optical field intensities, the
process of reducing ∆m << N1/2 is called “squeezing.” In Figure 10, we further illus-
trate the aptness of this term by sketching the effect of varying the parameters of the
Hamiltonian in Equation (18) on the Wigner distribution function. 

The experimental increase of the potential barrier height lowers the value of J,
which greatly reduces the tightness of the confinement in the α-direction of the 
(α, m)-phase space. In response, the Wigner distribution stretches out farther in 
the α-direction. Since the area of high probability shown in Figure 10 remains of
order 1, the uncertainty in the m-direction is tightly squeezed. Thus, as the hopping
motion of particles between adjacent wells is “frozen out,” each well contains a
better-defined number of particles. To further support their claim of having
observed quantum fluctuations, the Yale group also demonstrated that the trend of
decreased fringe sharpness may be turned around by reversal of the variation in
potential barrier height. 

Quantitative Treatment of Number Squeezing. We now revisit the description
of the double-well BEC to provide a quantitative understanding of the number
uncertainty squeezing illustrated in Figure 10. We introduce a dimensionless param-
eter, or coupling constant Γ, that characterizes the competing interactions in the sys-
tem: Γ = UN/2J is the ratio of the interparticle interaction energy per well (UN2/2)
to the tunneling energy per well NJ (the latter plays a role somewhat analogous to
that of kinetic energy in other systems). We minimize the Hamiltonian described by
Equation (18) in the α-representation. To convert Equation (18) from the number
representation to the α-representation, we replace the m-operator by –(1/i)∂/∂α.
Then, we calculate the expectation value of the Hamiltonian by using the Gaussian
state for the wave function ψ, ψ(α) ∝ exp(–α2/(4x). The expectation values are sim-
plified when expressed in terms of the width parameter x, which is related to the 
uncertainty in phase difference as ∆α = (2x)1/2: 〈m2〉 =  –〈∂2/∂α2〉 = 1/(2x) and
〈cos(α)〉 = exp(–x). 

Number 27  2002  Los Alamos Science  159

Atom-Trap BECs

Figure 10. Number
Squeezing in Phase Space 
This graph illustrates the
physics of number squeezing
by showing the effect of an
increase in the potential barrier
on the number phase (m,α)
Wigner distribution of the dou-
ble-well BEC discussed in the
text. The graphs show the area
in which the Wigner distribu-
tion of the many-body ground
state exceeds a minimal value.
An increase in the potential
barrier lowers the tunneling
rate J , which reduces the
{tightness of confinement in
the α-direction of the (m,α)
phase space. The word 
“confinement” refers to the
potential energy-like term in
the energy expression of
Equation (18) that depends on
α. As a result of lowering J,
the ground-state Wigner distri-
bution stretches out in the 
α-direction. In accordance with
the Heisenberg uncertainty
principle (∆m∆α ≈ 1), the area
of high Wigner distribution
value remains constant in the
process of stretching and the
number uncertainty ∆m
decreases accordingly.
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The expectation value of the Hamiltonian is then equal to

(19)

and we obtain the value of the width parameter x by minimizing Equation (19):

.
(20)

In the weakly coupled regime Γ << 2N2, the minimum expectation value occurs at
a value x << 1, in which case exp(x/2) ≈ 1 and Equation (20) yields the width param-
eter x ≈ (Γ/2)1/2/N. In other words, the weakly coupled case yields a very small phase
uncertainty,

∆α = (2x)1/2 ≈ (2Γ )1/4/ N1/2 << 1  , (21)

and therefore corresponds to the superfluid limit. Most superconducting Josephson
junctions find themselves in this limit. Because the number uncertainty is small,
∆α ~ N–1/2, the classical (or mean-field) approximation successfully describes these
Josephson experiments. The uncertainty in particle number ∆m ≈ N1/2/2Γ1/4 appears
Poissonian (∆N ≈ N1/2) if we write it in terms of the coupling constant. The small
phase uncertainty in this regime is not easily measured with appreciable accuracy. 

In contrast, as the value of J is lowered by an increasing barrier height, the coupling
constant Γ = [UN/2J] increases accordingly, and the phase uncertainty can increase to
give a measurable decrease in fringe sharpness. In the Yale experiment, the increase in
the potential barrier was sufficient to allow the system to approach the strong coupling
regime Γ ~ N2 or U/J ~ N. In that regime, the value of x at the minimum energy can
become of order 1, in which case we cannot replace exp(x/2) by 1. Instead, we must
solve Equation (20). By the time the potential barrier has been increased to the point
that, say, U/J = (4/e)N, the variation becomes ∆m = (l/2)1/2, and the uncertainty in
atomic population of each well has dwindled to less than one particle. At that point,
∆m << N1/2, and we say that the number distribution has become sub-Poissonian. 
The phase-difference uncertainty, ∆α, also becomes of order unity. Well before that
point, say, when U/J is increased to only 10 percent of N, or U/J = 0.1N, the uncer-
tainty in phase difference in the double-well BEC has grown to half a radian. In the
multiple-well BEC system, the uncertainty in phase between nonadjacent wells under
that same condition, U/J = 0.1N, is greater, and the loss of fringe sharpness in the
interference of 12 BECs is quite noticeable. 

From Superfluid to Mott Insulator 

By illustrating number squeezing, the Yale group demonstrated that BEC technology
can engineer and observe quantum fluctuations of an almost macroscopic system. On
the other hand, technical constraints in the Yale experiment limited the height to which
the potential barrier could be raised and, hence, the range to which the number uncer-
tainty could be squeezed. These limitations prevented the Yale group from venturing 
further into the strong-coupling regime. By pushing this frontier, Hänsch’s group in
Munich were able to observe a very interesting phase transition (Figures 11 and 12). 
As they squeezed the number uncertainty below a value of order 1—it would be (1/2)1/2
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in the approximations introduced previously—the ground state abruptly changes to a
Fock or number state with ∆m = 0. This phenomenon is a true phase transition: Many-
body properties change suddenly as U/J ~ N. In addition to the change in number statis-
tics, the system’s conductivity alters discontinuously as the system takes on a number
state. In the number state, a finite amount of energy is required to transfer atoms between
wells; therefore, the transition to the number state abruptly alters the nature of the 
many-body system from a conductor with superfluid properties to a Mott insulator. This
many-body phenomenon is an example of a transition driven by the competition between
different interactions, rather than by the competition between order and disorder, which is
responsible for usual phase transitions. If they involve quantum fluctuations, the former
transitions (which occur at zero temperature) are called quantum phase transitions. 

If we can trust the tunneling energy in Equation (16) and the interaction energy in
Equation (17) to accurately describe the many-body physics, then the BEC in an optical
lattice is an example of a Bose-Hubbard system. The theory of the phase transition from
superfluid to Mott insulator in such systems has been explored in great detail.
Experimentally, this transition was first observed in an array of superconducting
Josephson junctions. In BEC physics, the experimental study of the transition by the
Munich group demonstrated, once again, that the BEC technology gives an unusual
degree of control. 
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Cigar-Shaped BEC Spherical  BEC (a)

(d) (e) (f)
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Cubic-Lattice Variation in Optical Potential Height

Release

Time

Mirrors

V0

Vmax

Capturing Atoms in an Optical-Lattice Potential

Potential Interference Fringes

In the BEC experiment that demonstrated the quantum phase
transition from a superfluid to a Mott insulator (Greiner
2002), the experimentalists started with a cigar-shaped BEC
(a) that was relaxed to a spherical BEC (b), distributing the
atoms more evenly over a larger region of space. By shining
in three laser beams, detuned from each other and reflected
by mirrors, the researchers created a standing-wave pattern
that captures the atoms in an optical-lattice potential (c):
V (x, y, z) = V0[sin2(kx) + sin2(ky) + sin2(kz)], where k denotes
the wave vector of the laser light. Gradual increases in laser 

intensity and, hence, in the potential V0 trap one to three
atoms per potential minimum, or well. These minima form a
cubic lattice (d). In (e) we show a typical variation of the opti-
cal potential height V0: The potential height is ramped up
“slowly” for 80 ms and kept constant for another 20 ms; then
the trapping potential is suddenly switched off, at which
point the atoms in the BEC begin to expand. In (f), the atomic
wave functions from different wells begin to overlap, and the
atomic density imaged in a plane shows
interference fringes.

Figure 11. Demonstration of a Transition from a Superfluid to a Mott Insulator



Before describing the experiment, we demonstrate the transition in the double-well
BEC system. From Equation (19), we see that, in the limit of large phase uncertainty 
(x → ∞), the expectation value of the number-phase energy—Equation (18)—vanishes.
Consequently, when the local minimum of 〈H〉 takes on a positive value, the true 
minimum of the system is found at x → ∞, as we illustrate in Figure 13. As the value 
of U/JN increases, the value of the local minimum increases until, at U/J = (4/e)N,
corresponding to ∆α = 21/2 and ∆m = 2–1/2, the value of the minimum turns positive 
and the real minimum is at x → ∞, corresponding to ∆α → ∞ and ∆m = 0. 

A significant difference between the Yale and Munich experiments lies in the number
of potential wells created in the optical lattices. The trapping potential in Hänsch’s
group was a three-dimensional lattice of 65 sites in each dimension. The large number
of lattice sites in the Munich experiment, 653 in total, is significant because it allows
experimentalists to trap one to three particles per site while still having a sufficiently
large total number of atoms to image the interference of the expanding BECs. By lower-
ing the value of N (N was about 10,000 in the Yale experiment), the Munich group could
reach the critical ratio of U/J ~ N with a much smaller increase in barrier height.
Actually, the simple (α, m) treatment of the number-phase dynamics in the double-well
BEC becomes invalid for small values of N and a different description, such as the one
presented by Subir Sachdev (1999), is necessary. Nevertheless, the (α, m) description
still captures the main features and predicts the correct order of magnitude of the transi-
tion point. Hänsch’s group also probed the excitations of this system and found evidence
for the insulator property of a finite energy (or “gap”) necessary to allow transferring
atoms between wells. Again, these experiments illustrate the unprecedented tools offered
by the cold-atom technology. 

Los Alamos Achievements and Future Work

With regard to fundamental physics, we have shown that BEC experiments can
probe beyond the confines of traditional condensed-matter Josephson-junction studies
by exploring and engineering quantum fluctuations. We have also emphasized that
atom-laser systems with superfluid properties (long-range phase coherence in an equi-
librium as opposed to a nonequilibrium state) may offer unique opportunities for
application. For instance, the BECs may find novel uses in atom interferometry and
sensing applications.
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Figure 12. Absorption
Images Showing a
Transition to a Mott
Insulator in a BEC
The BEC absorption images
(a)–(h) were recorded in a 
particular plane 15 ms after 
the trapping potential was
switched off. The images
reflect different maximum 
values Vmax of V0. In units of
the recoil energy, Erecoil =
hh2k2/2m (capital R was used
for “right”), Vmax took on 
the values (a) 0, (b) 3Erecoil,
(c) 7Erecoil, (d) 10Erecoil ,
(e) 13Erecoil, (f) 14Erecoil,
(g) 16Erecoil, and (h) 20Erecoil.
Notice that the interference
pattern completely disappears
between V0 = 14Erecoil and V0
= 16Erecoil, in agreement with
the prediction that all phase
information would be lost as
the potential barriers increase
and the atoms become 
localized in their respective
potential wells.
(This figure was reproduced courtesy of

Nature.)



Hopefully, this historical perspective has also conveyed a sense of the flexibility of
the cold-atom-trap technology. That flexibility has led to a host of other avenues being
pursued or contemplated: for instance, schemes to alter and control the nature and
strength of the interparticle interactions, already successful searches for superfluid 
properties in BECs, demonstrations of nonlinear physics effects in superfluids 
(vortices, solitons, and “quantum shocks”), the study of mutually coherent BECs,
the demonstration of atom-molecule BECs, and the prospect of using BECs for the
study of quantum measurement theory. 

Los Alamos National Laboratory has been active in exploring several of the above
aspects. The following are some of the Los Alamos contributions and ongoing projects
that we are aware of. On the experimental side, David Vieira and Xinxin Zhao are work-
ing toward the use of an atomic BEC to cool down fermion atoms (see the article
“Experiments with Cold Trapped Atoms” on page 168). On the theoretical side, Peter
Milonni was the first to point out that external electric fields can be used to control the
interparticle interactions in the atom-trap systems (Milonni 1996). Diego Dalvit, Jacek
Dziarmaga, and Wojciech Zurek resolved the puzzle of the lifetime of the proposed
Schrödinger cat states in BEC-like systems, and they have proposed schemes to reduce
the effect of decoherence and increase the cat’s longevity (see the article “Schrödinger
Cats in Atom-Trap BECs” on page 166). In collaboration with experimentalist Roberto
Onofrio (visiting from the University of Padua, Italy), they continue to explore the possi-
ble use of BECs in studies of measurement theory. Lee Collins has explored the vortex
and soliton dynamics in BECs, working closely with the experimental group of Bill
Philips at the National Institute of Standards and Technology (Denschlag et al. 2000).
Gennady Berman and Augusto Smerzi are exploring the possibility of using BECs to
study the boundary between quantum and classical behavior (Berman et al. 2002), as well
as using BECs in optical lattices for interferometry purposes (Dziarmaga et al. 2002). 

Since 1996, I have also been active in BEC research. The prediction for the phase
separation of BECs under specific conditions (Timmermans 1998) has been confirmed
by experiments in Ketterle’s group at MIT. This same group also confirmed our 
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Figure 13. Number-Phase
Energy for Different
Interaction Parameters
The expectation values of the
number-phase energy of
Equation (18) are calculated
with a Gaussian trial wave
function ψ (α) ∝ exp(–α2/ [4x] )
and are plotted as a function of
the width parameter x, which is
related to the phase uncertain-
ty ∆α as x = (∆α)2/2. The differ-
ent curves show H(x) for differ-
ent values of the interaction
parameter (2N2/Γ). From bot-
tom to top, those values are
10, 5, e, and 1. For (2N2/Γ) < e,
the local minimum is also the
global minimum, whereas for
(2N2/Γ) > e, the global mini-
mum occurs in the limit x → ∞,
corresponding to a complete
uncertainty of the phase.
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predictions for the reduction of scattering slow distinguishable particles by the 
BEC (Timmermans and Côté 1998) and for the excitation rate of phonon modes in two-
photon scattering experiments. Recently, the group of Wieman at JILA found 
evidence for a prediction by Timmermans et al. (1999) of the formation of an atom-
molecule BEC in the Feshbach resonance scheme that was initially proposed to alter 
the effective interparticle interactions. In a recent collaboration with Milonni of 
Los Alamos and Arthur Kerman of MIT, I pointed out the possibility of creating a fermi-
on-boson superfluid (Timmermans et al. 2001) by bringing an ultracold fermion gas 
mixture near a Feshbach resonance. Finally, I discovered the heating mechanism that
explains the temperature limit encountered by efforts in fermion atom cooling and 
provides the main obstacle for the current experiments to reach fermion superfluidity in
atom traps (Timmermans 2001a).

The variety of approaches and cold-atom research topics at Los Alamos is yet another
measure of the richness of this field. By now, numerous experiments have established
the cold-atom trap as a new kind of laboratory in which to study interesting fundamental
issues in low-temperature, many-body, and nonlinear physics. The unusual control and
the variety of experimental knobs also hint at the possibility of practical applications.
Hopefully, Los Alamos can continue to play a significant role in the ongoing cold-atom
physics adventure. �
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